215 research outputs found

    Conductance beyond the Landauer limit and charge pumping in quantum wires

    Full text link
    Periodically driven systems, which can be described by Floquet theory, have been proposed to show characteristic behavior that is distinct from static Hamiltonians. Floquet theory proposes to describe such periodically driven systems in terms of states that are indexed by a photon number in addition to the usual Hilbert space of the system. We propose a way to measure directly this additional Floquet degree of freedom by the measurement of the DC conductance of a single channel quantum point contact. Specifically, we show that a single channel wire augmented with a grating structure when irradiated with microwave radiation can show a DC conductance above the limit of one conductance quantum set by the Landauer formula. Another interesting feature of the proposed system is that being non-adiabatic in character, it can be used to pump a strong gate-voltage dependent photo-current even with linearly polarized radiation.Comment: 9 pages; 3 figures: Final published version; includes minor revisions from the last versio

    Exploring Topological Phases With Quantum Walks

    Get PDF
    The quantum walk was originally proposed as a quantum mechanical analogue of the classical random walk, and has since become a powerful tool in quantum information science. In this paper, we show that discrete time quantum walks provide a versatile platform for studying topological phases, which are currently the subject of intense theoretical and experimental investigation. In particular, we demonstrate that recent experimental realizations of quantum walks simulate a non-trivial one dimensional topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological phases which have been classified in one and two dimensions. We further discuss the existence of robust edge modes at phase boundaries, which provide experimental signatures for the non-trivial topological character of the system

    Transport properties of non-equilibrium systems under the application of light: Photo-induced quantum Hall insulators without Landau levels

    Get PDF
    In this paper, we study transport properties of non-equilibrium systems under the application of light in many-terminal measurements, using the Floquet picture. We propose and demonstrate that the quantum transport properties can be controlled in materials such as graphene and topological insulators, via the application of light. Remarkably, under the application of off-resonant light, topological transport properties can be induced; these systems exhibits quantum Hall effects in the absence of a magnetic field with a near quantization of the Hall conductance, realizing so-called quantum Hall systems without Landau levels first proposed by Haldane.Comment: Updated to include the detailed explanation of formalism to study the non-equilibrium transpor

    Topological characterization of periodically-driven quantum systems

    Get PDF
    Topological properties of physical systems can lead to robust behaviors that are insensitive to microscopic details. Such topologically robust phenomena are not limited to static systems but can also appear in driven quantum systems. In this paper, we show that the Floquet operators of periodically driven systems can be divided into topologically distinct (homotopy) classes, and give a simple physical interpretation of this classification in terms of the spectra of Floquet operators. Using this picture, we provide an intuitive understanding of the well-known phenomenon of quantized adiabatic pumping. Systems whose Floquet operators belong to the trivial class simulate the dynamics generated by time-independent Hamiltonians, which can be topologically classified according to the schemes developed for static systems. We demonstrate these principles through an example of a periodically driven two--dimensional hexagonal lattice model which exhibits several topological phases. Remarkably, one of these phases supports chiral edge modes even though the bulk is topologically trivial.Comment: 9 Pages + Appendi
    • …
    corecore